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Abstract: This paper proposes a Linear Quadratic Regulator (LQR) based tuning of PID controller and is implemented 

for controlling the ball position of magnetic levitation system. Since the system is highly nonlinear in nature, nonlinear 

differential equations are used to model the system. For the controller design, this nonlinear model is linearized around 

the operating point using Taylor series expansion method. Performance of the proposed method is compared with that 

of PID controller which is tuned using conventional Ziegler Nichol‟s method. From the simulation studies it is clear 

that even though both the schemes are capable to control the ball position of magnetic levitation system the proposed 
method  yields better  result. Quantitative performance comparison is also made based on the time domain 

specifications such as settling time, maximum overshoot and steady state error. The result shows that LQR based PID 

controller outperforms its counterpart as the settling time and maximum overshoot are reduced considerably. 

 

Keywords: Proportional-integral-derivative (PID), Linear Quadratic Regulator (LQR), Magnetic Levitation System, 
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I. INTRODUCTION 

The Magnetic Levitation System is a benchmark laboratory model for the understanding of control systems. They are 

widely used in many engineering systems such as high-speed maglev passenger trains, frictionless bearings, levitation 

of wind tunnel models, vibration isolation of sensitive machinery, levitation of molten metal in induction furnaces, and 

levitation of metal slabs during manufacturing.  
 

Magnetic levitation (maglev) technology reduces the physical contact between moving and stationary parts and in turn 

eliminates the friction problem. Maglev systems are inherently nonlinear, unstable and are described by highly 

nonlinear differential equations which present additional difficulties in controlling these systems.  

 

The common control approaches to overcome the problem by this system namely linear quadratic regulator (LQR) 

control and ZN tuning that require a good knowledge of the system and accurate tuning to obtain good performance [1].   

 

Nevertheless, it attributes to difficulty in specifying an accurate mathematical model of the process. This paper presents 

investigations of performance comparison between conventional (PID) tuning method and linear quadratic regulator 

(LQR) based PID tuning schemes for a magnetic levitation system.  
 

Here the aim is to stabilize the ball position. Performance of both tuning strategies with respect ball position is 

examined.  

 

Comparative assessment of both schemes to the system performance is presented and discussed. 

 

II. MODELING OF THE MAGNETIC LEVITATION SYSTEM 

Levitation is the stable equilibrium of an object without contact and can be achieved using electric or magnetic forces 

[3]. In a magnetic levitation, or maglev, system a ferromagnetic object is suspended in air using electromagnetic forces 

[5,7].  

 
These forces cancel the effect of gravity, effectively levitating the object and achieving stable equilibrium. The system 

model is given in figure.1 
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Fig 1.  Magnetic levitation system 

 

The maglev system consists of an electromagnet, a steel ball, a ball post, and a ball position sensor. The entire system is 

encased in a rectangular enclosure which contains three distinct sections. The upper section contains an electromagnet, 

made of a solenoid coil with a steel core. The middle section consists of a chamber where the ball suspension takes 

place. One of the electro magnet poles faces the top of a black post upon which a one inch steel ball rests. A photo 

sensitive sensor embedded in the post measures the ball elevation from the post. The last section of maglev system 

houses the signal conditioning circuitry needed for light intensity position sensor. The entire system is decomposed into 

two subsystems, namely, mechanical subsystem and electrical subsystem. The coil current is adjusted to control the ball 

position in the mechanical system, whereas the coil voltage is varied to control the coil current in an electrical system. 

Thus, the voltage applied to the electromagnet indirectly controls the ball position. In the following section, we obtain 

the nonlinear mathematical model of the maglev system and linearize it around the operating region in order to design a 

stabilizing controller. 
 

Table.1 Magnetic levitation system parameters 

Symbol Description Value 

𝐿𝑐  Coil inductance 412.5mH 

𝑅𝑐  Coil resistance 10Ω 

𝑁𝑐 
Number of turns in the 

coil wire 
2450 

𝑙𝑐  Coil length 0.0825m 

𝑟𝑐  Coil steel core radius 0.008m 

𝑅𝑠 Current sense radius 1Ω 

𝐾𝑚  
Electromagnet force 

constant 
6.5308E-005 

𝑟𝑏  Steel ball radius  1.27E-002m 

𝑀𝑏  Steel ball mass 0.068kg 

𝐾𝑏  
Ball position sensor 

sensitivity  
2.83E-03m/V 

g Gravitational constant  9.81𝑚/𝑠2 

 

Applying Kirchhoff‟s voltage law for the electrical circuit in Figure.2 

Ic
dt

d
LIcRsRcVc  )(

   (1)

 

The transfer function of the circuit can be obtained by applying Laplace transform to Eq. (1) 

1)(

)(
)(




s

Kc

sVc

sIc
sGc


   (2)

 

Total force experienced by the ball is  given by 

𝐹𝑐 + 𝐹𝑔 = −
1

2

𝐾𝑚𝐼𝑐2

𝑥𝑏 2 + 𝑀𝑏 . 𝑔    (3) 

Nonlinear equation of motion is given by  
𝑑2𝑥𝑏

𝑑𝑡 2 = −
1

2
 
𝐾𝑚 𝐼𝑐2

𝑀𝑏 𝑥𝑏
2 + 𝑔     (4) 

At the the equilibrium point the derivative terms are set to zero. 

−
1

2
 
𝐾𝑚 𝐼𝑐2

𝑀𝑏 𝑥𝑏
2 + 𝑔 = 0     (5) 

The coil current at the equilibrium point is given by, 



 ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 
                    International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering 

 

nCORETech 
 

LBS College of Engineering, Kasaragod 
 

Vol. 3, Special Issue 1, February 2016 
 

Copyright to IJIREEICE                                                         DOI 10.17148/IJIREEICE                                                                                      121 

IJIREEICE  

𝐼𝑐0 =  
2𝑀𝑏𝑔

𝐾𝑚
 𝑥𝑏0     (6) 

  In order to design a linear controller, the system must be linearized around equilibrium point, the point at which the 

system will converge as time tends to infinity. The nonlinear system equations are linearized around the operating point 
𝑑2𝑥𝑏1

𝑑𝑡 2 = −
1

2

𝐾𝑚 𝐼𝑐02

𝑀𝑏𝑥𝑏02 + 𝑔 +
𝐾𝑚𝐼𝑐02𝑥𝑏1

𝑀𝑏𝑥𝑏03 −
𝐾𝑚𝐼𝑐 1𝐼𝑐0

𝑀𝑏𝑥𝑏02   (7) 

The transfer function will get as  

𝐺𝑏 𝑠 = −
𝐾𝑏𝜔𝑏

2

𝑠2−𝜔𝑏
2      (8) 

 

 
Fig 2. Magnetic levitation schematic diagram 

 

III. LQR BASED OPTIMAL PID TUNING 
In this section the gain parameters of PID controller determined using the LQR approach. Here, the points which are 

important for determining the controller gain alone are explained. In this approach, the error, error rate and integral of 

error are considered as state variables to obtain the optimal controller gains of the PID controller. The maglev system is 

represented by the generalised second order transfer function model. 

Let the state variables be 

𝑥1 𝑡 =  𝑒(𝑡)  𝑥2(𝑡) = 𝑒(𝑡) and 𝑥3 𝑡 =
𝑑𝑒 (𝑡)

𝑑𝑡
  

from the figure 
𝑌(𝑠)

𝑈(𝑠)
=

𝐾

𝑠2+2𝜁0𝜔𝑛
0 𝑠+(𝜔𝑛

0 )2 =
𝐸(𝑠)

𝑈(𝑠)
     (9) 

State space representation of the system is 

 
𝑥1 

𝑥2 

𝑥3 
 =  

0 1 0
0 0 1
0 −(𝜔𝑛

0)2 −2𝜁0𝜔𝑛
0  
  

𝑥1
𝑥2
𝑥3

 +  
0
0
𝐾
 𝑢  (10) 

 

From where the system matrices A and B can be found. 

In order to get optimal performance through LQR the quadratic cost function J should be minimised [2,4].  

𝐽 =   [𝑥𝑇∞

0
 𝑡 𝑄𝑥 𝑡 + 𝑢𝑇 𝑡 𝑅𝑢(𝑡)]𝑑𝑡   (11) 

 

To get J as minimum the controller input u(t) should be optimal 

𝑢 𝑡 = −𝑅−1𝐵𝑇𝑃𝑥 𝑡 = −𝐹𝑥(𝑡)  
Where P is the symmetric positive definite solution of the Continuous Algebraic Riccati equation given by 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0    (12) 
The weighting matrix Q is a symmetric positive definite and the weighting factor R is a positive constant. The 

corresponding state feedback gain matrix is  

𝐹 = 𝑅−1𝐵𝑇𝑃 = 𝑅−1 0 0 𝐾  
𝑃11 𝑃12 𝑃13

𝑃21 𝑃22 𝑃23

𝑃31 𝑃32 𝑃33

  

= 𝑅−1𝐾 𝑃31  𝑃32  𝑃33 = −[𝐾𝑖  𝐾𝑝  𝐾𝑑 ]   (13) 
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The expression for control signal will in the form  

𝑢 𝑡 = −𝐹𝑥 𝑡 = − −𝐾𝑖 − 𝐾𝑝 − 𝐾𝑑   
𝑥1 𝑡 

𝑥2 𝑡 

𝑥3 𝑡 
    (14) 

Then we get P in terms of  PID controller gains as  

𝑃13 =
𝐾𝑖

𝑅−1𝐾
 𝑃23 =

𝐾𝑝

𝑅−1𝐾
 𝑃33 =

𝐾𝑑

𝑅−1𝐾
  

 

The closed loop system matrix for the system with state feedback gain matrix is 

𝐴𝑐 =  
0 1 0
0 0 1

−𝑅−1𝐾2𝑃13 (−(𝜔𝑛
0)2−𝑅−1𝐾2𝑃23 ) (−2𝜁0𝜔𝑛

0 − 𝑅−1𝐾2𝑃33 )
   (15) 

Equating the coefficients of desired and closed loop characteristic equations, the elements of the third row of matrix P 

is solved. 

 2𝜁0𝜔𝑛
0 + 𝑅−1𝐾2𝑃33 =  2 + 𝑚 𝜁𝑐𝜔𝑛

𝑐     (16) 
 𝜔𝑛

0)2+𝑅−1𝐾2𝑃23 = (𝜔𝑛
𝑐 )2 + 2𝑚(𝜁𝑐)2(𝜔𝑛

𝑐 )2   (17) 

𝑅−1𝐾2𝑃13 = 𝑚(𝜁𝑐 𝜔𝑛
𝑐 )3      (18) 

𝑃13 =  
𝑚(𝜁𝑐  𝜔𝑛

𝑐 )3 

𝑅−1𝐾2        (19) 

𝑃23 =  
(𝜔𝑛

𝑐 )2+2𝑚(𝜁𝑐)2(𝜔𝑛
𝑐 )2−(𝜔𝑛

0 )2

𝑅−1𝐾2      (20) 

𝑃33 =
 2+𝑚 𝜁𝑐𝜔𝑛

𝑐 −2𝜁0𝜔𝑛
0

𝑅−1𝐾2       (21) 

 

The remaining unknown elements of „P‟ matrix can be determined by solving the algebraic Riccati Equation. With the 

known third row elements of P matrix the other elements of P and Q matrices can be obtained as 

𝑃11 = (𝜔𝑛
0)2𝑃13 + 𝑅−1𝐾2𝑃13𝑃23      (22) 

𝑃12 = 2𝜁0𝜔𝑛
0𝑃13 + 𝑅−1𝐾2𝑃13𝑃23      (23) 

𝑃13 = 2𝜁0𝜔𝑛
0𝑃23 + 𝑅−1𝐾2𝑃23𝑃33 + (𝜔𝑛

0)2𝑃33 − 𝑃13   (24) 

𝑄1 = 𝑅−1𝐾2𝑃13
2        (25) 

𝑄2 = 𝑅−1𝐾2𝑃23
2 − 2(𝑃12 − (𝜔𝑛

0)2𝑃23 )    (26) 

𝑄3 = 𝑅−1𝐾2𝑃33
2 − 2(𝑃23 − 2𝜁0𝜔𝑛

0𝑃33 )    (27) 
 

IV. PERFORMANCE COMPARISON OF LQR WITH CONVENTIONAL TUNING 

In this section the proportional, integral and derivative gains of PID controller is find out using conventional tuning 

algorithm ie, Zeigler Nichol‟s open loop tuning method. This method of finding controller setting was developed by 

Zeigler and Nichols also referred as process reaction method [6]. This method can be used for only systems with self 

regulation. In a typical open loop controller response, the disturbances applied at two times. We expressed the deviation 

as the percentage range. Using these time constant and lag time is measured [9]. 

 
Fig. 3  PID controller response using LQR and ZN tuning methods 

 

The simulation studies are carried out in SIMULINK platform by taking the open loop parameters of magnetic 

levitation system[8] as K=7,  ω=1 .8 and  𝜁 =0.8. From fig.3 it is clear that both tuning schemes are suited for obtaining 
controller gains and hence to attain the control strategy. Comparing all characteristics from Table.2 LQR tuning yields 
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better result by a fast settling time and reduced disturbance rejection time. And also the maximum overshoot is reduced 

considerably. However, for the overall performance by considering both ball positions, both tuning methods are 

successfully designed and in fact LQR controller has the best response and better performance which satisfy the design 

criteria very much. 

 

Table.2 Time response specifications 

Time response 

specifications 
LQR ZN 

Settling Time  

(Sec) 
0 .75 3.95 

Maximum 

Overshoot (%) 
7 36 

Disturbance 

Rejection Time 

(Sec)  

0.9 3.2 

 

V. CONCLUSION 
In this paper, two tuning methods such as LQR and PID are successfully designed. Based on the results and the 

analysis, a conclusion has been made that both of the tuning method linear quadratic regulator (LQR) and conventional 

tuning (ZN) are capable of tracking the ball position of the linearized system. All the successfully designed methods 

were compared. The responses of each tuning were plotted and are summarized in Table 2. Simulation results show that 

LQR controller has better performance compared to ZN open loop method of maglev system. Further improvement 

need to be done for both of the tuning. 
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